A New Tool for Simulation of Tanks and Columns with Bubble Mixing Based on VisiMix Turbulent Software

User's Guide and Application Example

<u>Step 1</u>

The tool start window is shown in Fig. 1.

Prepare ViSiMix input for Heat Transfer ca	lculations in Columns with Air Mixing	- 🗆 X				
INITIAL DATA INPUT DATA FOR VISIMIX TURBULENT PROGRAM						
	Jacketed Tank with Flat Bottom	Impeller Pitch Paddle. Multistage				
	Inside diameter, m	Dist. between stages, m				
	Total tank hight, m	Tip diameter(D), m				
H H1	Level of media, m	Pitch angle, deg				
	FLAT BAFFLE-1	Impellers number				
	Length, m	Number of blades				
< <u>D</u>	Number	Dist. from bottom, m				
Total Column Hight (H) , m	Angle to radius (fi)	Motor power, kW				
Column Diameter (D) , m	Width, m	Width of blade, m				
	Dist. from bottom	Rotation speed, rpm				
Liquid Depth (H1) , m						
Gas Flow Rate , cub.m/s	ESTIMATED FLOW CHARACTERISTICS					
	Circulation Flow, cub.m/s					
Print Calculate Exit	Near Wall Velocity, m/s					

Figure 1

Enter column basic geometry characteristics and feed flow rate of bubbling gas into the left-hand side box and click "**Calculate**" button. Design characteristics of the "equivalent" reactor configured as a bubble mixing tank or column are calculated and displayed in the right-hand side box as shown in Fig. 2.

Prepare ViSiMix input for Heat Transfer ca	lculations in Columns with Air Mixing	- 🗆 ×			
INITIAL DATA INPUT DATA FOR VISIMIX TURBULENT PROGRAM					
	Jacketed Tank with Flat Bottom	Impeller Pitch Paddle. Multistage			
	Inside diameter, m 2.8	Dist. between stages, m 2.4			
	Total tank hight, m	5 Tip diameter(D), m 1.4			
H H1	Level of media, m	Pitch angle, deg 30			
	FLAT BAFFLE-1	Impellers number 3			
	Length, m 12	Number of blades 3			
<⁻>	Number	Dist. from bottom, m 2.4			
Total Column Hight (H) , m	Angle to radius (fi)	Motor power, kW 102.8			
Column Diameter (D) , m	Width, m 0.28	Width of blade, m 0.14			
2.8 Liquid Depth (H1), m	Dist. from bottom	Rotation speed, rpm 111.2			
12	ESTIMATED FLOW CHARACTERISTICS				
Gas Flow Rate , cub.m/s	Circulation Flow, cub.m/s 4.892				
Print Calculate Exit	Near Wall Velocity, m/s 1.589				

Figure 2

Enter these characteristics as input data for VisiMix Turbulent program. Internal circulation flow rate and near-wall velocity in your bubble column are estimated and displayed in the bottom right-hand side box.

<u>Step 2</u>

Open VisiMix Turbulent program and start a new project using VisiMix menu.

The tank type selection window is displayed as shown in Fig. 3. Select flat-bottom tank with your type of jacket.

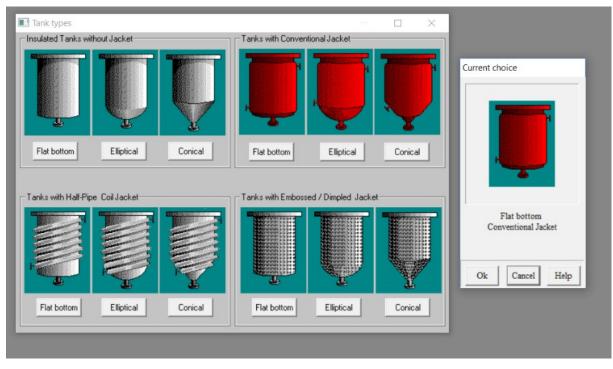


Figure 3. Tank Type Selection

Press OK. The input window for tank geometry is displayed, see Fig. 4. Enter the three input tank characteristics (inside diameter, total tank height and level of media) shown in Fig. 2. The total tank volume and volume of liquid in the tank are calculated and displayed also.

TANK WIT	H FLAT BOTTOM	
Inside diameter	2.8 m 💌	
Total tank height	15 m 💌	
Total volume	92.36 cub.m 💌	15000
Level of media	12 m 💌	
Volume of media	73.89 cub.m ▼	¥
OK Cancel	Choose new tank Print	Help

Figure 4. Tank Geometry Input Window

Press OK. The baffle type selection window is displayed as shown in Fig. 5. Select "Flat baffle – 1."

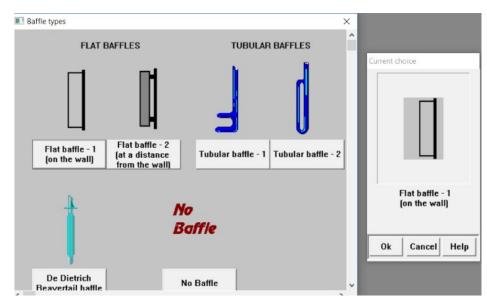


Figure 5. Baffle Type Selection

Press OK. The window for entering baffle geometry is displayed as shown in Fig. 6. Enter baffle details shown in Fig. 2.

FLA	T BAFFLE-1	
Number	4	
Width	0.28 m 💌	88
Length	12 m 💌	
Dist. from bottom	0 mm 💌	<u>2200</u>
Angle to radius (fi)	0 deg 💌	x
OK Cancel	Choose new baffle Print	Help

Figure 6. Baffle Geometry Input Window

Press OK. Impeller selection window is displayed as shown in Fig.7. Select a pitch paddle multistage impeller.

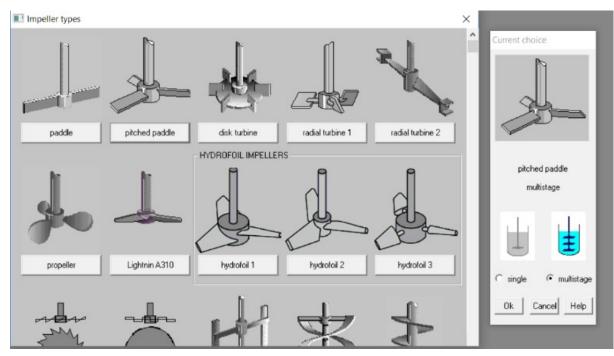


Figure 7. Impeller Type Selection Window

Press OK. The impeller geometry input window is displayed, see Fig. 8.

DLE. MULTIS	STAGE		
1.4	m 💌		
3]		
2.4	m 🔹		
3]		
30	deg 💌		15000
0.14	m 🔹		+
2.4	m 🔹		
111.2	Rpm 💌		Ψ
102.8	KW -		2 2800
102.8	K₩ -		22800
hoose new impe	ller Prin	t	Hel
	1.4 3 2.4 3 0.14 2.4 111.2 102.8	3 2.4 m • 3 30 deg • 0.14 m • 2.4 m • 111.2 Rpm • 102.8 KW •	1.4 m ▼ 3 2.4 m ▼ 3 30 deg ▼ 0.14 m ▼ 2.4 m ▼ 111.2 Rpm ▼ 102.8 KW ▼

Enter impeller characteristics shown in Fig. 2.

Figure 8. Impeller Geometry Input Window

Press OK. The window for jacket characteristics is displayed, see Fig. 9. Enter characteristics of your reactor jacket.

TANK HEAT TRANSFER GENERAL DATA	Help
Jacket covers bottom Number of jacket sections Lower section Distance from bottom Height, Hlow Heat transfer area for lower section If unknown, enter 0 * Upper section Distance between two sections Height, Hup Heat transfer area for upper section Distance between two sections Height, Hup Heat transfer area for upper section If unknown, enter 0 * Connection or jackets The section of the section Sq.m. v Sq.m. v	MOI H
* In this case heat transfer area will be evaluated by VisiMix	OK Cancel Print

Figure 9. Jacket General Characteristics

Press OK. The input windows for characteristics of liquid inside the bubble column are displayed consecutively, see Figs. 10 and 11. Enter characteristics of your liquid.

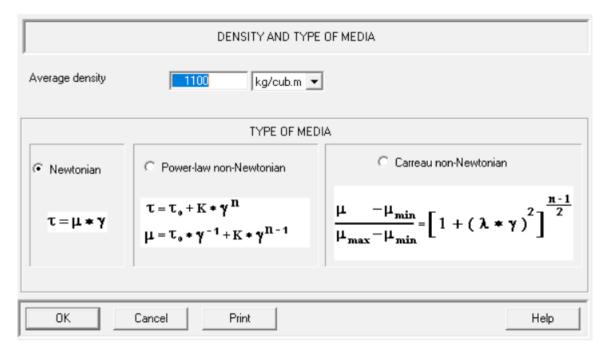


Figure 10. Liquid Density and Rheological Characteristics

AVERAGE VISCOSITY OF MEDIA				
Dynamic viscosity 3 cP • Kinematic viscosity 2.727 cSt •	τ=μ∗γ, where τ - shear stress, Pa; μ - dynamic viscosity, Pa*sec; γ - shear rate, 1/sec;			
OK Cancel Print	Help			

Figure 11. Liquid Viscosity

Press OK. A sketch of the equivalent mixing tank is displayed, see Fig. 12.

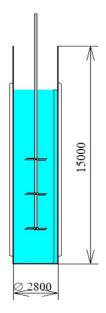


Figure 12. Tank Sketch

From "**Calculate**" menu at VisiMix Turbulent main window, select a characteristic of heat transfer you want to calculate for your bubble column, see Fig. 13.

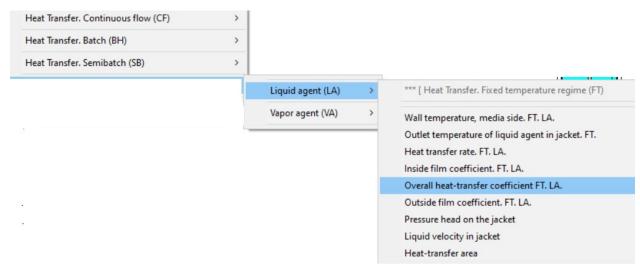


Figure 13. VisiMix Heat Transfer Section Menu

We consider overall heat-transfer coefficient calculation for liquid agent below as an example.

After selection, the tank shell characteristic input window (Fig. 14) is displayed.

Enter characteristics of your column wall.

TANK SHELL CHARACTERISTICS				
Material Hastelloy B-2				
Wall thickness	6 mm	•		
Thermal resistance of fouling	0 (m²×K)/W	•		
Tank mass (without drive) If unknown, enter 0 *	0 kg	•		
OK Cancel Print Help				
* In this case tank mass will be evaluated by VisiMix				

Figure 14. Tank Wall Characteristics

Press OK. The input window for specific characteristics of jacket is displayed as shown in Fig. 15.

Enter characteristics of your Jacket.

CONVENTIONAL JACKET. SPECIFIC CHARACTERISTICS.						
Heat-transfer enhancing device	absent 💌	- Lower section Width, W Wall thickness, t	30	mm •		
Diameter of nozzle	mm 💌	Number of inlets Number of nozzles			->< ^t	
Spiral channel height	mm 💌	Upper section Width, W Wall thickness, t		mm 💌	->- <w< td=""></w<>	
Leakage, %		Number of inlets Number of nozzles				
OK	Cancel	Print			Help	

Figure 15. Jacket Characteristics

Press OK. The window for entering your process temperature limits is displayed as shown in Fig. 16. Enter characteristics of your process.

Will you enter reaction kinetics?	NO	•		Reaction velocity constant K is described by Arrhenius equation :
Arrhenius constant		l/(mol*sec)	~	$K = A \exp(-E / RT)$
Energy of activation		J/mol	~	where
ower limit of temperature.	10	°C	•	A is Arrhenius constant , E is energy of activation , B = 8.314 J / (mol [×] K) =
Jpper limit of temperature	40	0	•	= 1.986 Btu / (Ib*mol) / *F is universal gas constant ,
leat effect of reaction		J/mol	-	T is absolute temperature .

Figure 16. Process Characteristics

Press OK. The input window for entering characteristics of heating or cooling liquid supplied to the jacket is displayed as shown in Fig. 17.

Enter characteristics and flow rate of your heating or cooling liquid.

HEATING / COOLING LIQUID AGENT IN JACKET.						
Heating/cooling agent Water						
Inlet temperature	20	 ■ 3° 				
Flow rate of heat transfer agent in lower jacket	20	cub.m/h				
Flow rate of heat transfer agent in upper jacket		cub.m/h 💌				
OK Cancel Print Help						
Operating temperature range: 5 - 204°C [41 - 400°F] Properties of the agent density1000 kg/m² [62.4 lbm/ft²] specific heat4190 J/(kg*K) [1.01 Btu/(lbm*°F)] thermal conductivity0.603 W/m*K [0.348 (Btu*ft)/(h*ft²*°F)] dynamic viscosity at 100°C(212°F)0.000284 Pa*sec [0.284 cP]						

Figure 17. Heating or Cooling Liquid Characteristics

Press OK. As the fixed temperature mode was selected for simulation as shown in Fig. 13, the input window for entering the process temperature is displayed as shown in Fig. 18.

Enter your process temperature.

HEAT TRANSFER MEDIA TEMPERATURE FOR FIXED TEMPERATURE REGIME					
Temperature 30 °C 💌					
ОК	Cancel	Prin	it .	Help	

Figure 18. Process Temperature

Press OK. Finally, the input window for thermal characteristics of the liquid in your column is displayed as shown in Fig. 19.

Media	HEAT TRANS		OF THE ME	DIA	
	PARAMETER			TEMPER	RATURE
Average density	1100	kg/cub.m	•	20	°C 💌
Dynamic viscosity	3	cP	•	20	•°C ▼
Specific heat	4200	J/(kg*K)	•	20	•C 💌
Heat conductivity	0.6	W/(m*K)	•	20	► 3°
OK	Cancel	Print			Help

Fig. 19. Thermal Properties of the Mixing Liquid

Press OK.

Now all necessary input data are entered, and the heat transfer characteristic selected in Fig. 13 are calculated as shown in Fig. 20.

OVERALL HEAT-TRANS	FER COEFFICIENT FT. LA.		
Parameter name	Units	Value	
Overall heat-transfer coefficient, lower jacket. FT.	W/(sq.m*K)	167	
Overall heat-transfer coefficient, upper jacket. FT	W/(sq.m*K)	0	
		For HELP p	ress

Figure 20. Output Window - Heat Transfer Characteristic Selected

You can select more parameters from the VisiMix calculation menu and obtain their values as shown in Fig. 21.

HEAT-TRANSF	FERARE	EA		PRESSURE HEAD	ON THE JA	ACKET
Parameter name	Units	Value		Parameter name	Units	Value
Heat transfer area. Lower section Heat transfer area.	sq.m	106	-	Pressure head, lower jacket. FT. LA Pressure head, upper	N/sq.m	1.18e+0
Upper section Active heat transfer area. Lower section	sq.m sq.m	0 101	-	jacket. FT. LA	N/sq.m	0
	For HI	ELP pre	ss F1		For HE	LP pro
botage] - Liquid velocity in jac		CKET	8	Barbotage] - Outside film coeffi		
						. FT. LA
LIQUID VELOCIT	Y IN JA	CKET		OUTSIDE FILM COE	FFICIENT	. FT. LA

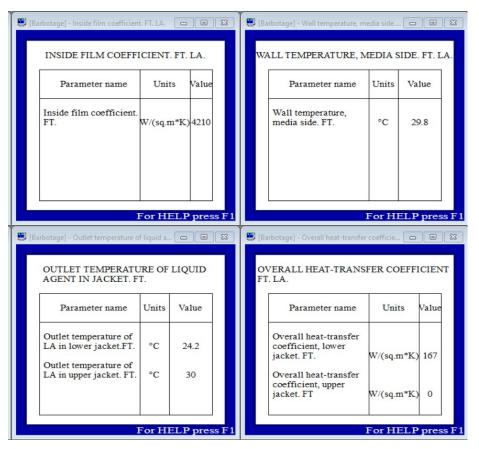


Figure 21. Output Window Examples

Note. Using the Gas Liquid section of VisiMix, one can obtain a value of mass transfer rate also.